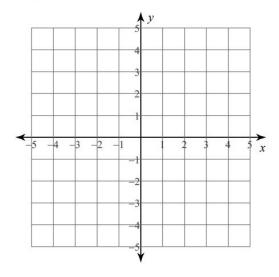
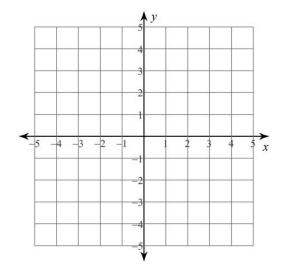


Math Virtual Learning Algebra 1 S1 Graphing system of linear inequalities

May 7, 2020

Algebra I S1 Lesson: May 7, 2020


Objective/Learning Target:
Students can graph systems of linear inequalities given in standard form.


BELL RINGER

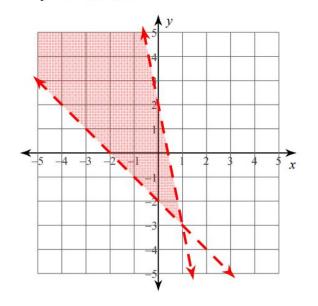
Sketch the solution to each system of inequalities.

1)
$$y \le -x - 2$$

 $y \ge -5x + 2$

2)
$$y > -x - 2$$

 $y < -5x + 2$


BELL RINGER-solution

Sketch the solution to each system of inequalities.

1)
$$y \le -x - 2$$

 $y \ge -5x + 2$

2)
$$y > -x - 2$$

 $y < -5x + 2$

• Product rule for exponents: $a^n \cdot a^m = a^{n+m}$

VIDEO # 1: Product rules for exponents

https://www.youtube.com/watch?v=3qilc01RGr4

VIDEO # 2: Product rules for exponents

https://www.youtube.com/watch?v=11F9kKZK9BI

Product rules practice examples

$$3r^3 * 2r =$$

$$4n^3 * n =$$

$$5y * 3y^2 * y^3 =$$

$$4y^4 * 3y^{-2} =$$

$$2g * 4g^2 * k^2 =$$

Product rules practice examples

Video answers

https://www.youtube.com/watch?v=FQS03Ljcbeg

Practice on your own

Exponents and Multiplication

Simplify. Your answer should contain only positive exponents.

1)
$$2^3 \cdot 2^6$$

8)
$$\left(\frac{2}{3}\right)^2 \cdot \left(\frac{2}{3}\right)^5 \cdot \left(\frac{2}{3}\right)^4$$

2)
$$\left(\frac{1}{h}\right)^3 \cdot \left(\frac{1}{h}\right)^2$$

9)
$$y \cdot y^2$$

3)
$$y^3 \cdot y^2 \cdot y^5$$

10)
$$8cr^4 \cdot 5c^5r^2$$

Practice on your own

4)
$$b^2 \cdot b^4$$

11)
$$6r^6 \cdot 4r^5 \cdot 7r^4$$

5)
$$\left(\frac{1}{5}\right)^2 \cdot \left(\frac{1}{5}\right)^6$$

12)
$$3n^5d^6 \cdot 9nd^2$$

6)
$$\left(\frac{1}{8}\right)^3 \cdot \left(\frac{1}{8}\right)^4 \cdot \left(\frac{1}{8}\right)^6$$

7)
$$(\frac{2}{5})^3 \cdot (\frac{2}{5})^4$$

14)
$$4k^6g^2 \cdot 9k^5g^4$$

Practice on your own-answers

Exponents and Multiplication

Simplify. Your answer should contain only positive exponents.

2)
$$\left(\frac{1}{h}\right)^3 \cdot \left(\frac{1}{h}\right)^2$$
 $\left(\frac{1}{h}\right)^5$

3)
$$y^3 \cdot y^2 \cdot y^5$$
 y^{10}

8)
$$\left(\frac{2}{3}\right)^2 \cdot \left(\frac{2}{3}\right)^5 \cdot \left(\frac{2}{3}\right)^4$$
 $\left(\frac{2}{3}\right)^{11}$

Practice on your own-answers

4)
$$b^2 \cdot b^4$$

 b^6

5)
$$\left(\frac{1}{5}\right)^2 \cdot \left(\frac{1}{5}\right)^6$$
 $\left(\frac{1}{5}\right)^8$

6) $\left(\frac{1}{8}\right)^3 \cdot \left(\frac{1}{8}\right)^4 \cdot \left(\frac{1}{8}\right)^6$ $\left(\frac{1}{8}\right)^{13}$

7)
$$\left(\frac{2}{5}\right)^3 \cdot \left(\frac{2}{5}\right)^4$$
 $\left(\frac{2}{5}\right)^7$

11) $6r^6 \cdot 4r^5 \cdot 7r^4$ $168r^{15}$

12) $3n^5d^6 \cdot 9nd^2$ $27n^6d^8$

13) 7 • 7⁴

14)
$$4k^6g^2 \cdot 9k^5g^4$$

 $36k^{11}g^6$